

Room Sealed Fanned Balanced Flue Combination Boiler

GAS SAFETY (INSTALLATION AND USE) REGULATIONS.

It is the law that all gas appliances are installed by a competant person in accordance with the above regulations (For use on natural gas only. G20)

> G.C. No 47 980 07 from serial number 994 225 395 - 31

Installation and Servicing Instructions

(leave these instructions with the user)

at 15

CONTENTS

Page No.

Healt	h and Safety	Information	1	
1.	INTROI	DUCTION		
	1.	General description, special features, guarantee	2	
	1.1.	Dimensions Fig. 1	2	
	1.2.	Technical Data	3	
	1.3.	Clearances	3	
	1.4.	Wall thickness	3	
	1.4.1.	Rear flue outlet Fig. 2	4	
	1.4.2.	Side flue outlet Fig. 3, Fig. 3a, Fig. 3b	4	
	1.4.3.	Other flue arrangements Horizontal Fig. 3c	4	
	1.5.	Description of components and location Fig. 4	5	
	1.6.	Description of operation	6	
	1.6.1.	Central heating Fig. 5	6	
	1.6.2.	Hot water Fig. 6	6	
	1.6.3.	Gas (also see 2.7)	7	
	1.6.4.	Functional flow diagram Fig. 7	7	
	1.6.5.	Safety controls	7	
	1.6.6.	Functional flow wiring diagram Fig. 8	8	
	1.6.7.	Illustrated wiring diagram Fig. 9	8	
2.	INSTALLATION REQUIREMENTS			
	2. 1.	General	9	
	2.2.	Location	9	
	2.3.	Water circulation system	9	
	2.4.	Siting the flue terminal Fig. 10	9	
	2.5.	Air supply	10	
	2.6.	Electrical supply	10	

2.6.Electrical supply102.7.Gas supply10

3. SYSTEM GUIDANCE

3.1.	General	10
3.2	System controls	11
3.3.	Pump Fig. 11	11
3.4.	Expansion vessel	11
3.5.	Mains water connection	11
3.6.	Filling and recharging Fig. 12, Fig. 13 (page 12)	11
3.7.	Make up system	11
3.8.	Pipework	11
3.9.	Domestic expansion vessel	11
3.9.1.	Boiler replacement	12
3.9.2.	Existing systems	12
3.10	Cylinder	12
3.11	Inhibitors and water conditioners	12
3.12	Add on devices	12
3.13	Heating and hot water systems Fig. 14, Fig. 15, Fig. 16, Fig. 17	13
3.14	Shower application Fig. 17a	14

CONTENTS (cont)

4. INSTALLING THE BOILER

	General information	15
4.1.	Positioning the boiler Fig. 18	15
4.2.	Rear outlet flue Fig. 19	15
4.3.	Side outlet flue Fig. 20	16
4.4	Jig plate Fig. 21	16
4.5.	Gas and water connections Fig. 22	16
4.6.	Water connections	16
47	Gas connection	16
4.8.	Fitting the boiler Fig. 23	17
4.9.	Fitting the safety valve Fig. 24	17
4.10.	Fitting the flue (up to 700 mm long) Fig. 25	17
4.11.	Fitting the flue (over 700 mm long)	18
4.12	Connection the pressure switch Fig. 26	18
4.13.	Electrical connections Fig. 27	18

5. EXTERNAL CONTROLS

5.1.	Time clock - Time clock and room stat Flg. 28	19
5.2.	Time clock and zone valves (spring return) Fig. 29	19
5.3.	Programmer and zone valves Fig. 30	20
5.4.	Honeywell & Satchwell controlled zones Fig. 31	20
5.5.	Frost thermostat Fig. 32	20

6. COMMISSIONING

6.1.	Hot water circuits, filling Fig. 33	21
6.2.	Central heating circuits, filling, Fig. 34	21
6.3.	Lighting the boiler Fig. 35	21
6.4.	Gas rate adjustment Fig. 36, Fig. 37, Fig. 38	22
6.5.	D.H.W. flow rate adjustment (see also 6.7, Fig. 39a)	23
6.6.	Adjusting the heating system by-pass Fig. 39	23
6.7.	D.H.W. flow rate adjustment Fig. 39a	23
6.8.	Pump switching adjustment Fig. 39b	23
6.9.	Fitting the casing Fig. 40	24

7. ROUTINE SERVICING

	General requirements	25
7.1.	To remove front casing Fig.41	25
7.2.	To remove combustion chamber Fig.42	25
7.3	To remove burner assembly Fig.43	26
7.4.	To remove pilot Fig.44	26
7.5.	To clean heating return filter Fig.45	26
7.6.	Cleaning and replacement of parts	27
7.7.	To check operation of safety valve Fig.46	27

Page No.

CONTENTS (cont)

Page No.

8. **REPLACEMENT OF PARTS**

.

8.1.	To remove therrnocouple Fig. 47, Fig. 48	28
8.2.	To replace electrode and lead assembly Fig. 49	28
8.3.	To replace overheat thermostat Fig. 50	28
8.4.	To replace ignition microswitch Fig. 51	29
8.5.	To replace C.O.V. microswitch Fig. 52	29
8.6.	To replace flow switch assembly Fig. 53	29
8.7.	To replace venturi Fig. 54	30
8.8.	To replace primary heat exchanger Fig. 55	30
8.9.	To remove electrical control box Fig. 56, Fig. 56a (page 33)	30
8.10.	To replace pump head Fig. 57	31
8.11.	To replace change over valve Fig. 58, Fig. 58a (page 34)	31
8.12.	To replace secondary heat exchanger Fig. 59	32
8.13.	To replace air separator Fig. 59a	32
8.14.	To replace boiler thermostat Fig. 60	33
8.15.	To replace boiler limit thermostat Fig. 61	33
8.16.	To replace D.H.W. thermostat Fig. 62	33
8.17.	To replace spark generator Fig.63	34
8.18.	To replace P.C.B. Fig. 64 Electrical box layout Fig. 65	34
8.19.	To replace thermo electric valve Fig. 66	35
8.20.	To replace solenoid valves Fig. 67	35
8.21.	To replace heating body linings Fig. 68	35
8.22.	To replace fan assembly Fig. 69	35
8.23.	To replace pressure switch Fig. 70	36
8.24.	To re-pressurise expansion vessel Fig. 71	36
8.25.	To replace pressure gauge Fig. 72	36
8.26.	To replace the domestic expansion vessel Fig. 73	37
8.27.	To replace main burner Fig. 74	37
8.28.	To replace burner manifold assembly Fig. 75	37
8.29.	To replace pilot injection Fig. 76	38
8.30.	To replace expansion vessel Fig. 77	38
8.31.	To replace viewing window Fig. 78	38
8.32.	To replace main gas valve body Fig. 79	39
8.33.	To replace the thermometer Fig. 80	39
8.34.	To replace safety valve Fig. 81	39

9. FAULT FINDING

9.1.	Logic sequence	40
9.2.	Central heating operation	41
9.3.	Domestic hot water operation	42
9.4.	Fault finding tabular chart	43

SHORT SPARE PARTS LIST

Rear cover

CONTROL OF SUBSTANCES HARMFUL TO HEALTH

IMPORTANT

To comply with the Control of Substances Harmful to Health Regulation 1988 we are required to provide information on the following substance that is contained in this appliance.

DescriptionCombustion Chamber LiningMaterialAlumino Silicone FibrePrecautionsDuring servicing, keep the dust generation to a minimum and avoid
inhaling any dust and contact with the skin and eyes. Normal handling
and use will not present any discomfort, although some people with a
history of skin complaints may be susceptible to irritation.

When disposing of the lining ensure that it is securely wrapped and wash hands after contact.

1. INTRODUCTION

The **Celtic plus** is a wall mounted, low water content fanned balanced flue appliance suitable for central heating and hot water via a non storage water to water heat exchanger. The maximum output is 23 kW (78480 Btu/h). The boiler is designed for sealed systems only and included in the appliance is the expansion vessel, circulating pump, temperature and pressure gauges, safety valve, electric connection box, and domestic expansion vessel.

The standard flue assembly supplied with the boiler is 100 mm (4 in) dia pipe, can be directed to the rear or to the lett or right and can be extended to a maximum length of 3 m, or 1,6 metres horizontally using the available 90° bend (see sections 1.4.1, 1.4.2 and 1.4.3 figures 2, 3, 3a, 3b, 3c).

1/3 and full output.

- High efficiency.

- Special jig plate enabling all pipework to be installed before installing appliance.

- Independent control over central heating flow temperature and hot water.

- Fully adjustable central heating flow temperature.

- Regulation between 50° C and 82° C.
- High limit thermostat for both boiler and hot water.
- Water flow switch to protect appliance.
- Suitable for showers with compatible mixer valves.

Special features include :

- Output to central heating fully range rated between

Guarantee

The manufacturer's guarantee on this appliance is for 12 months from the date of purchase. The guarantee is void, if the appliance is not installed in accordance with the recommendations made herein.

1.2 Technical Data

Hot water			Connections	
Input	28.90 kW	98612 Btu/h	Gas	22 mm copper
Output	23.00 kW	78480 Btu/h	Heating flow	22 mm copper
Water flow raised	7 4 1/	17 dillaria	Heating return	22 mm copper
45 °C (81 °F)	7.4 1/min	1.7 gai/min	Mains cold water inlet	15 mm copper
25 °C (62 °E)	0 E 1/min	2.1 columin	Hot water outlet	15 mm copper
Water flow raised	9.5 Milli	2.1 gaviiiii		
$30 \circ (54 \circ F)$	11.1.1/min	2.5 gal/min	Electrical supply 240 V ~ 50 Hz, fused at 3A.	
Maximum temperature	50 °C	140 °F	Electrical consumption	195 watts
Maximum pressure	10 bar	150 psi	Internally fused, two at 2A (BS 4265)	40.4
Minimum working pressure	.6 bar	9 psi	Weight	42 kg 92.4 lb
Gas rate	2.743 m ³ /h	96.87 ft ³ /h	Water capacity	4 littres / pints
Burner pressure	11.8 mbar	4.7 in wg		
•			Ignition - Anstoss continuous spark generator	
Central heating			Electrode - Chaffoteaux et Maury Ltd, spark ga	ap 5 mm
Maximum input	27.64 kW	94313 Btu/h	Boiler thermostat - EGO (82°C)	
Maximum output	22.00 kW	75068 Btu/h	Boiler limit thermostat - SOPAC / IAEGER (85)	°C)
Gas rate (maximum)	2.63 [°] m ³ /h	92.98 ft ³ /h		(5790 + 290)
Burner pressure	11.2 mbar	4.5 in wg	Hot water limit thermostat - SUPAC / JAEGER	(5/ (± 3 °C)
Minimum input	10.85 kW	37020 Btu/h	Safety overheat thermostat (Tokoswitch - (10)5°C)
Minimum output	7.64 kW	26062 Btu/h	(Elmwood - (105)	°C)
Gas rate (minimum)	1.0 m³/h	35.31 ft ³ /h		-
Burner pressure	1.5 mbar	0.6 in wg		
Minimum flow rate	300 l/h	1.1 gal/min	Gas valve - AEMF	
Maximum pressure	2.5 bar	36.5 psi	Fan motor - SEL	
	Nator	al gas	Pressure switch - DUNGS 102 Pa / 55 Pa	
Manifold injectors 14 of	1.28 mm	0.05 in	Pump head - GRUNDFOS UP 15/60	
Pilot injector	0.3 mm	0.01 in	C.H. expansion vessel initial charge pressure - (0.65 bar (9.6 psi)
Gas section restrictors 2/3 valves	4.4 mm	0.17 in		
1/3 valve	2.3 mm	0.09 in	Domestic expansion vessel initial charge pressu	re - 2 dar (30 psi)

1.3

Minimum Clearances around Boiler

Top above air duct	50 mm	(2 in)
Bottom below case	150 mm	(6 in)
Sides	100 mm	(4 in)
Front	600 mm	(24 in)

1.4

Wall Thicknesses

The standard flue assembly can accomodate the following thicknesses. Rear : from 55 mm to 576 mm Side : from 55 mm to 392 mm (this allows for a minimum clearance of 100 mm between the appliance and the side wali. As this dimension increases, so the maximum side wall thickness available decreases). Extension flue assemblies are available to accomodate wall thicknesses of : Rear : from 577 mm to 2876 mm

Side : from 393 mm to 2692 mm

See figs. 2 and 3 for details of number of extensions required.

IMPORTANT NOTE: The extension ducts supplied, up to a maximum of 3, will in fact permit a greater length than indicated to be covered. The ducts MUST be cut so that the maximum length from the centre line of the flue turret to the outermost point of the air duct DOES NOT EXCEED 3 metres horizontal. Greater length must not be used.

See sections 1.4.1. 1.4.2. 1.4.3.

1.4.3

- 1. Distance from internal corner 300 mm without kit,107 mm with kit No 76216 (GC No 264 833).
- Distance below balconies or eaves 200 mm without kit, 107 mm with kit No 76216 (GC No 264 833).
- 3. Appliance is normally supplied packed with standard 650 mm staight flue section. Additional straight extension lengths of 1 metre, part No 62823 (GC No 264 459), can be use up to a total straight length of 3 metres. It is also possible to incorporate one bend in the flue using part No 65572 (GC No 264 835). In this case the length L1 + I2 should not exceed 1.6 metres horizontally.

1.5 Description of Components and Location

The appliance is mounted in a steel case which has a white epoxy resin paint finish.

1. Chassis:

The chassis is a rigid plated mild steel pressing on which all components are mounted.

2. Flue hood:

Is an aluminium alloy casting onto which the two speed fan is mounted.

3. Combustion chamber:

This is assembled from a number of components mounted onto the chassis. The front panel is simply removed for servicing complete with the expansion vessel, a hook is fitted below the appliance to accept and retain the panel during servicing.

4. Expansion vessel:

The expansion vessel has a capacity of 5,4 litres (1.19 gal) and is sized for a .normal system water content where the load is equivalent to the maximum output of the boiler. The charge pressure is 0.65 bar.

5. Pilot security is by thermocouple flame failure.

6. Multigas burner comprising: stainless steel blades (14) and a manifold with injectors (14).

7. Gas section including thermoelectric valve and two stage solenoïd valves.

8. Secondary heat exchanger :

The secondary heat exchanger is a plate type heat exchanger. A thermostat is fitted on the pipework limiting the domestic hot water temperature to a maximum of 57 $\pm 3^{\circ}$ C.

9. Change over valve :

The valve is activated by a demand for domestic hot water, closes the heating circuits, and directs water to the secondary heat exchanger.

10.Electricial box containing :

Mains connection

Fuses

Printed circuit board

Connections for external controls

Connections for fan, pressure switch and flow switch

Connections for pump

Connections for change over valve and for gas solenoid valve

11. Solenoid valve :

Block on which 3 valves are mounted :

1/3 valve -1st stage valve-heating and hot water (blue)

2/3 valve - full output to hot water (black)

2/3 valve - (variable valve) central heating (orange)

12. Grundfos pump motor

13. Air separtor and vent directly connected to the pump inlet (not illustrated).

14. Regulation screw to adjust output to heating (2/3 valve).

15. Heating body comprising :

Copper finned tube heat exchanger protected with silicone resin paint. Combustion chamber in aluminium coated steel. Combustion chamber lining - ceramic fibre panels.

16. High limit thermostat (manual reset).

- 17. Water service tap (not illustrated).
- 18. Flow isolating valve heating (not illustrated).
- 19. Gas service tap (not illustrated).

20. Domestic hot water outlet with regulator (not illustrated).

21. Safety valve with drain tap (not illustrated).

22. Heating return isolating valve with filter (not illustrated).

23. Ignition button.

24. Thermometer indicating boiler flow temperature.

25. Fases.

26. Selector switch - hot water only/OFF/heating and hot water.

27. Thermostat to regulate heating flow temperature.

28. Pressure gauge.

- 29. Pressure switch (not illustrated).
- 30. Domestic expansion vessel (not illustrated).
- 31. Water flow switch (not illustrated).
- 32. Data badge position.

1.6 Description of Operation

The **Celtic plus** is combination boiler providing central heating and hot water. Hot water is provided on a demand basis. For the duration of the demand for hot water the central heating is interrupted.

The appliance operates in two modes. A hot water only setting where it operates only on hot water demand and a hot water + central heating setting providing central heating and switching to hot water on demand.

1.6.1 Central Heating (see fig. 5)

The pump (21) circulates water which returns to the boiler via the return valve (31) which incorporates a filter (30). Before reaching the pump it passes through an air separator and air purger (17). The return water passes through the heat exchanger (2) where it is heated. It then passes through the change over valve (19) which in heating mode is in its rest position and out via the flow valve (27) to the radiator circuits (34).

The boiler thermostat (8) controls the temperature of the circulation water between a minimum of 50° C approx and a nominal maximum of 82° C. The boiler thermostat also controls the opening of the 1/3 (11) and variable solenoid valve (10).

The limit thermostat (16) set to 85° C closes both solenoids valves in the event of its set temperature being reached as could occur under the low flow conditions. The boiler is protected by a high limit thermostat (4) the operation of which interrupts the thermocouple and extinguishes the pilot. If the high limit thermostat operates it is necessary to manually re-establish the pilot.

An expansion vessel (13) is fitted in the primary circuit.

1.6.2 Hot Water (see fig. 6)

When there is a demand water flows in from the cold mains supply (26) through the water section part (35) of the change over valve (19). The inclusion of a venturi (24) produces high pressure under the diaphragm (23) causing it to rise. This movement is transmitted to the change over valve closing the heating port and opening the hot water port, as shown (20). The primary water heated by the boiler now passes through the water to water heat exchanger (18) where it flows through alternate plates indirectly heating the DHW.

The rising of the change over valve spindle causes :

1. The opening of a microswitch stopping the pump. This circuit is remade by a second microswitch making when the hot water port is fully open.

2. The by-passing of the boiler thermostat brings the boiler under control of a fixed temperature thermostat (32) which operates on the 2/3 fixed solenoid (12).

The D.H.W. flow rate is adjustable by a restrictor (25) and a limiting thermostat (32) reduces the gas rate when the domestic hot water reaches 57° C by interrupting the electrical supply to the hot water solenoid (12).

If the primary circuit reaches 85°C the limit thermostat (16) closes both solenoïds valves.

A domestic expansion vessel is fitted in the D.H.W. circuit (36).

Hot Water

15

16

Œ

1.6.3 Gas (see figs. 5 and 6)

When the main gas tap (33) is turned to the on position gas is admitted to the gas section (7). Pressing the ignitor button (9) operates a microswitch causing the commencement of a firing cycle. The fan changes from low to high speed and after a purge period of approx 14 seconds a continuous stream ot sparks are delivered lighting the pilot gas (3). Simultaneously the thermoelectric valve (14) is opened and after a further 5 seconds sufficient energy is being produced by the thermocouple (5) for the thermoelectric valve to be retained in the open position. When the ignitor button is slowly released gas is admitted to the underside of the solenoid valves (10,11 and 12).

There are 3 solenoid valves: the centre (blue) valve (11) frxed at 1/3 of max rated output the right hand hot water (black) valve (12) fixed at 2/3 of maximum rated output, the left hand central heating (orange) valve (10) which is variable up top 2/3 maximum rated output. The gas admitted by the orange valve is varied by adjuster (6) (see section 6.4).

1.6.5 Safety Controls

In addition to the normal safety controls the **Celtic plus** incorporates the following feature.

Should the central heating water flow reduce to below 300 l/h (1,1 gal/min) the gas supply to the burner is turned off, see fig. 4 (31) and figs. 5 & 6 (37).

2 INSTALLATION REQUIREMENTS

2.1 General

The installation of the boiler must be in accordance with Gas Safety (Installation and Use) Regulations, Building Regulations and current Byelaws of the Local Water Undertaking. It should be in accordance also with the current B.S. Codes of Practice and the British Gas Specifications for Domestic Wet Central Heating Systems and any relevant requirements of the local Gas Region, Local Authority Building Standards (Scotland) Regulations, and the Safety Document 635, The Electricity at work Regulation.

Detailed recommendations are stated in the following British Standard Codes of Practice:

B.S. 6891, B.S. 6798, B.S. 5440 : 1 and 2, B.S. 5449: 1, B.S. 7593, BS 5546 B.G.DM2, B.S. 4814, B.S. 7074 1 e 2, B.S. 7671.

Note : Gas Safety Installation and Use Reg. It is the law that all gas appliances are installed by competant persons in accordance with the above regulations. Failure to install appliances correctly could lead to prosecution. It is in your own interest and that of safety to ensure compliance with the law.

2.2 Location

The boiler is not suitable for external installation. The position chosen for the boiler must permit the provision of a satisfactory flue termination. The location must also permit adequate space for servicing and air circulation around the boiler. The surface on which the boiler is mounted must be of non combustible material.

The boiler may be installed in any room or internal space although particular attention is drawn to the requirements of the current B.S. 7671 and, in Scotland, the electrical provisions of the Building Regulations applicable to Scotland, with respect to the installation of a heater utilising mains electricity in a room or internal space containing a bath or shower.

Where the installation of the boiler will be in an unusual location special procedures may be necessary and BS 5546 gives detailed guidance on this aspect. A compartment used to enclose the boiler must be designed and constructed specifically for this purpose. An existing cupboard or compartment may be used

provided that it is modified for the purpose. Details of essential features of cupboard/compart-

ment design are given in BS 6798.

2.3 Water Circulation System

The **Celtic plus** is suitable for SEALED SYSTEMS **ONLY** and should be installed in accordance with the relevant recommendations given in BS 6798. BS 5449:1 (for the smallbore or/and microbore systems) and the British Gas Specifications for Central Heating Systems.

2.4 Siting the Flue Terminal

Refer to section 1.4 for details of wall thicknesses which can be covered.

Detailed recommendations for flueing are given in BS 5440 Pt 1. The following notes are intended to give general guidance.

The boiler must be installed so that the flue terminal is exposed to external air. The boiler must NOT be installed so that the terminal discharges into another room or space e.g. outhouse or closed in lean-to. It is important that the position of the terminal allows a free passage of air across at all times. The minimum acceptable clearances from the terminal to obstructions and ventilation openings are specified below (fig. 10).

Horizontal Flue

Terminal positions	Min clearances
A - Directly below an opening, window	vs etc
or adjacent to an opening	300 mm
B - Below gutters soil pipes or drain p	pipes 75 mm
C - Below eaves	200 mm*
D - Below balconies or car port roof	200 mm*
E - From a vertical drain pipe or soil p	oipe 75 mm
F - From an internal or external corne	2r 300 mm*
G - Above ground roof or balcony lev	el 300 mm
H - From a surface facing the termina	1 600 mm
J - From an opening in the car port	
(e.g. door or window) into dwellin	ıg1200 mm
K - Vertically from a terminal on the	ame
wall	
L - Horizontally from a terminal on th	e
same wall	300 mm

* (107 mm) minimum clearance using kit No. 76216.00 (G.C. 264 833).

BUILDING REGULATIONS excerpt.

Approved document J Part B 1.4 (C) (D).

C) Protect with a terminal guard if it could come in contact with people near the building or be subjected to damage.

D) Designed so as to prevent the entry of any matter which might restrict the flue.

(A terminal guard G.C. No 381 782 is available from).

Quinnel Barret & Quinnel Wireworks

Old Kent Road London SE15 INL Tel. 081-639-1357

The air inlet/outlet duct and the terminal of the appliance must not be closer than 25 mm (1 in) to any combustible material. Detailed recommendations on the protection of combustiable material are given in BS 5440 Pt 1.

IMPORTANT NOTICE : TIMBER FRAMED HOUSES

IF THE APPLIANCE IS TO BE FITTED IN A TIMBER FRAMED BUILDING IT SHOULD BE FITTED IN ACCORDANCE WITH THE BRITISH GAS PUBLICATION - "GUIDE FOR GAS INSTALLATIONS IN TIMBER FRAMED HOUSING" reference DM2. IF IN DOUBT, ADVICE MUST BE SOUGHT FROM THE LOCAL REGION OF BRITISH GAS OR C.O.R.G.I.

Air Supply 2.5

The room in which the boiler is installed does not require a purpose provided air vent.

If the boiler is installed in a cupboard or compartment permanent air vents are required in the cupboard or compartment, one at high level and one at low level either direct to the outside air or to a room. Both high and low level air vents must communicate with the same space.

Position of vents Air from room	Air direct from	outside
---------------------------------	-----------------	---------

High level	261 cm ² (40 in ²)	130 cm ² (20 in ²)
Low level	261 cm ² (40 in ²)	130 cm ² (20 in ²)

Electrical Supply

2.6

- This appliance must be earthed.

- All wiring external to the appliance must conform to the current B.S. 7671.

- The Celtic plus requires a 240 V - 50 Hz supply.

- Connection of the appliance and any system controls to the mains supply must be through a common isolator and must be fused at 3A maximum.

This should preferably be an unswitched shuttered socket outlet and 3 pin plug to BS 1363. Alternatively, a double pole isolating switch may be used, provided it has a minimum contact separation of 3 mm in both poles. The isolator should be clearly marked showing its purpose, preferably positioned close to the appliance.

-Fuse the supply at 3A.

-The supply cord must be 0.75 mm² (24 x 0.2 mm) three core to BS 6500 Table 16.

2.7 Gas Supply

The Celtic plus requires:

2.743 m³/h (96.87 ft³/h) gas flow.

The meter and supply pipes should be capable of delivering this quantity of gas in addition to the demand from any other appliances in the house.

The complete Installation must be tested for soundness as described in BS 6891.

3 SYSTEM GUIDANCE

3.1 General

The low water content **Celtic plus** boiler includes the expansion vessels, safety overheat thermostat, temperature and pressure gauges, and safety valve.

The flow temperature is adjustable and gives a nominal 82 $^{\circ}\mathrm{C}$ (180° F) on its maximum setting.

Detailed recommendations for water circulation are given in BS 5546. Whilst the boiler provides hot water, there may be occasions when a cylinder will be used, for instance, if the property has two bathrooms. Detailed recommendations of this application is given in section 3.13. Thermostatic control should be used in the heating circuits and the cylinder if one is fitted.

It must be remembered that a combination appliance has a limited volume of hot water that can be supplied at any one time for a given temperature. Indeed in most respects it is equivalent to a multipoint water heater and many of the contraints associated with multipoints apply equally to combination boilers.

The appliance has two separate functions, to provide heating and hot water on demand. It can have a third which is to supply hot water high demand through the use of an indirect cylinder, where there is more than one bathroom or if the standard and appointments of the property, such as basins in all bedrooms and a large kitchen indicate a high usage of hot water.

Hot water produced indirectly through a cylinder can be used to satisfy high simultaneous demand outlets bathrooms etc, whilst the benefits of high efficiency in generally small quantities of hot water, can be fully utilised in kitchens, cloakrooms and so on.

Separate time and temperature control over hot water generated in this way can be achieved by the use either of two port valves or three port valves of a flow share or priority pattern.

It is also possible, where the occupation of the house is variable, to provide either for a small or large load. This is best achieved with a tall, small diameter cylinder. See section 5 for possible wiring arrangements.

A domestic expansion vessel is fitted to the boiler with a capacity of 0,16 litres, prior to the secondary heat exchanger which enables the boiler to be connected to a cold main water supply containing a non-return valve or any device containing a non-return valve. IF THE MAINS COLD WATER SUPPLY IS IN EXCESS OF 10 BAR (150 PSI) A PRESSURE LIMITER MUST BE FITTED TO AVOID EXCESSIVE PRESSURE BEING APPLIED TO THE BOILER.

When replacing an existing cylinder storage system with **Celtic plus** it is essential that all redundant pipework is removed and dead legs eliminated,

In properties where there are multiple draw-off Points on different levels consideration should be given to the use of non-return valves in the secondary hot water system to avoid "active dead legs". No nonreturn valve should be less than 1 m (3 ft) above the top of the appliance and ideally should be as close as possible to the hot water outlet.

3.2 System controls

The boiler is electrically controlled and is suitable for most control schemes currently available including thermostatic radiator valves and motorised valves.

When using motorised valves the controls should be arranged to switch off the boiler when circuits are satisfield. The boiler requires a minimum flow rate of 300 L/h (1.1 gal/min) and consequently, if thermostatic radiator valves are fitted to all radiators, a by pass will be necessary. This will ensure that the boiler will operate correctly when all TRVs are closed. (see fig. 17).

3.3 Pump

The boiler is fitted with a Grundfos UP.15/60 pump head. The graph (fig. 11) indicates the residual head available for the system.

3.4 Expansion vessel

The expansion vessel which is fitted on the front of the combustion chamber accomodates system water expansion. The vessel has a capacity of 5.4 litres (1.19 gals) and is charged to a pressure of 0.65 bar (9.7 p.s.i.).

THE CONNECTION IN THE CENTRE OF THE EXPANSION VESSEL IS A CHARGING AND NOT A VENT POINT. At the design flow temperature and the initial system pressures quoted the maximum allowable system volume is 75 litres. If the water volume is not known and cannot be accurately assessed from manufacturers data the following volumes may be used to give a conservative estimate of the system volume.

Boiler	4 litres (0,8 gals)
Small bore pipework	.0.3 litres (0.07 gals)
	per 0.292 kW
Microbore pipework	7 litres (1.5 gals)
Steel panel radiators	2.3 litres (0.5 gals)
per 0.292 kW (1000 Btu	h) of system output
Hot water cylinder	2 litres (0.44 gals)

If the volume exceeds 75 litres an additional vessel will be required fitted in the flow from the appliances. Refer to BS 7074 Pt. 1 or BS 5449 for details of sizing.

3.5 Mains water connection

There shall be no permanent connection to the Heating System Pipework for filling or replenishing without the approval of the Local Water Authority (see Byelaw No.14 and figs. 12 and 13).

3.6 Filling point (see B.S. 5449)

Filling and recharging can be done :

1) Through a temporary hose connection to mains water.

A stop-valve should be fitted to the service main outlet and a double check valve assembly and stop-valve should be fitted to the system side of the temporary hose (see fig. 12).

2) A cistern used for no other purpose connected to the mains water.

The static head provided by the cistern <u>must</u> be sufficient to satisfy the designed initial system pressure. The supply pipe from the cistern should include the double check valve assembly and stopcock (see fig. 13).

Make up system

Provision must be made for replacing water lost from the system indicated by a reduction in pressure shown on the pressure gauge. Recharge through the filling point (see section 3.6).

Pipework

3.7

3.8

3.9

Pipework can be of copper or suitable plastic, small bore or microbore with capillary or compression jointing to a high standard, leak sealant must not be used in the system.

Domestic expansion vessel

The expansion vessel which is fitted on the cold water supply to the secondary heat exchanger accomodates domestic hot water expansion. The vessel has a capacity of 0,16 litres (0.035 gals) and is charged to a pressure of 2 bars (30 p.s.i.); it has a maximum working pressure of 10 bars with an allowable pressure peak of 14 bars.

Test cock

Fig. 13

3.9.1 Boiler replacement (retrofit)

In an old system where the boiler is being replaced, we recommend the use of a strainer, fitted with a drain tap on the heating return, designed to retain scale particles and other solid debris It is good practice to use a chemical cleaner with a floctuating agent, used as recommended by the cleanser manufacturer, to clean the system before the old boiler is removed. (see BS 7593).

(b) Automatic filling and make-up.

3.9.2 Existing systems

Valves and joints should be carefully checked for leaks and the appropriate action should be taken either as a repair or replacement. The old open system has probably only been subjected to a pressure of 0.4 bar or less. When you change to a sealed system where the charge pressure will be 1.0 bar and the running pressure exceeding 1.5 bar, consideration should be given to the replacement of radiator valves with a pattern capable of sealing at the higher pressures.

3.10 Cylinder

Where a domestic hot water cylinder is used with the **Celtic plus** it MUST be of the indirect and high recovery type to BS 1566 Pt 1 Single feed cylinders are not suitable for use with this appliance. Flow and return pipework to the cylinder should be in 22 mm pipe.

3.11 Inhibitors and water conditioners (see BS 7593)

Chaffoteaux et Maury generally recommend the use

of inhibitors in systems using the **Celtic plus** boiler.

system pressure

The following are the appliance manufacturer's recommendations :

1) Use only a British Gas or similar approved inhibitor. These manufacturers can assist with the selection.

Grace Dearbon Ltd - Widnes - Cheshire WA8 8 UD Tel: 051 424 5351.

Fernox Manufacturing Company Limited Britannica Works, Clavering, Essex CB11 4QZ

Tel: 0799 085811

2) Use only the quantities specified by the inhibitor manufacturer.

3) Cleanse the system as required by the inhibitor manufacturer.

4) Add inhibitor only after flushing when finally refilling the system.

5) In-line water conditioners both of chemical and magnetic type are suitable for use with the **Celtic plus**.

3.12 Add-on devices

It is important that no external control devices e.g. economisers be directly fitted to this appliance unless covered by these installation instructions or agreed with the manufacturer in writing. Any direct connection of a control device not approved by the manufacturer could make the guarantee void and also infringe the Gas Safety (Installation & Use) Regulations.

3.13 Heating and hot water systems

Figs. 14, 15, 16 and 17 indicate various layouts for the production of hot water. It is recommended that only a high recovery indirect cylinder is used and circumstances may from time to time dictate that a special saturated heat exchanger in an indirect cylinder may be desirable.

When replacing an exisiting cylinder storage system with an instantaneous type system it is essential that all redundant pipework is removed and dead legs eliminated.

The consideration of heating systems using thermostatic valves should ensure that the minimum flow rate through the appliance is maintained at all times and in this connection the remote by-pass is preferred (see fig. 17).

3.14 Shower Application

The appliance can be used to supply hot water to separate shower draw-off. It <u>must</u> not be used to supply more than one shower mixing valve.

The recommended pipework arrangement for a shower is shown below and the hot supply to the mixing valve should be the first draw off.

It is important to select a compatible shower for the Celtic plus The following manufacturers can assist with the selection

New Team Ltd Brunell Road Earlstree Industrial Estate Corby Northants NN17 2LF

Tel.No.0536-62822

Aqualisa Products Ltd

Hortons Way London Road Westerham Kent TN16 1BT

Tel.No.0959-63240

Meynell Valves Ltd Shaw Road Bushbury Wolverhampton West Midlands WV10 9LB

Tel.No.0902-28621

Barking Grohe

1 River Road Barking Essex IG11 0HD

Tel.No.081-594-8898

Do not use the appliance with push on hand showers that fit over hot and cold taps.

4 INSTALLING THE BOILER

A vertical flat area is required for the boiler: 1122 mm high x 591 mm wide (44 in x 23.25 in). The surface on which the boiler is mounted must be of a non reverberating and of a non combustible material. The appliance is supplied in a single carton which contains :

1) The **chassis** with all functional parts attached.

- 2) Casing comprising : 2 side panels
 - 1 front panel
 - 1 controls fascia cover
 - 1 glass door complete with hinges

3) Mounting bracket comprising :	flueguide top support plate spacing strip bottom support plate plastic jig plate connection
4) Plastic bag containing : gas filte	er/washer
5) Box containing : gas and water	connections inc.4 above.
6) Box containing : control knobs	
safety valve	
wall plugs	
screws and fix	angs.
7) Flue assembly : flue turret with	pressure differential switch and 1st flue duct section
plastic wall line	r with terminal
flue duct	
plastic turret co	ver
2nd flue section	1
8) Plastic bag containing : flue lock	ting ring
'O' ring	5 5
2 gasket	ts - one cork and one rubber
4 moun	ting screws with washers for flue turret

N.B. (i) Flue accessories are not supplied as standard, and must be ordered to suit (see section 1.4)

15

4.7 | Gas connection

a) The gas connection is 22 mm diameter.
b) Make the gas connection using solder capillary fittings.
N.B. The gas supply pipe must not be less than 22 mm diameter

IMPORTANT NOTE:

At this stage the pipework can be completed and tested before the boiler is positioned. Having completed a satisfactory test on the pipework the boiler can now be fitted or retained for fitting at a later date.

a) Ensure 'O' ring is in position within the socket from heating return isolating valve b) Fit safety valve and secure with grub screw provided.

c) Fit support bracket (A). Fig. 24 d) Fit 14 mm tail drain bend using washer

4.10

Fig. 25

Fitting the flue up to 700 mm long

a) Cut plastic duct (G) to length required (see fig. 2 or 3 dimension (L)).

b) Cut same amount from aluminium flue duct (H).

N.B. In very cold weather the plastic air duct becomes brittle, warm before cutting.

c) Remove plastic turret cover (D) from flue turret (B)

Fitting the boiler

- a) Before hanging the boiler, uncoil wiring harness (connections to pressure switch) stored by changeover valve, route through front of chassis and up front of boiler, place into clips.
- b) Remove plastic jig plate from bracket and retain screws.
- c) Hang boiler on mounting bracket, ensure that it is properly located.

N.B. Insert washer into union nut and offer assembly to boiler. Use the plain black 3/4 and 1/2 diameter graphited fibre washers for water unions, and the white 3/4 filter/washer for the gas union.

- d) Connect water union using plain washers, working from left to right.
- e) Connect the gas union using the filter/washer packed separately either way round.

N.B. As an alternative to using the plastic jig plate the tails can be fitted to the boiler before mounting, then connected to the services.

provided.

N.B. The drain must be 22 mm and the 14 mm drain bend from the safety valve must be installed so that discharge of water is directly over the 22 mm drain and readily visible. A tundish arrangement is acceptable. The connection must NOT be made by a capilary or compression fitting directly between the 14 mm drain bend and the 22 mm discharge pipe without a 2 mm air gap (see fig. 24).

THE 22 MM DISCHARGE PIPE MUST DISCHARGE TO THE OUTSIDE OF THE BUILDING WHERE POSSIBLE OVER A DRAIN. THE DISCHARGE MUST BE SUCH THAT IT WILL NOT BE HAZARDOUS TO OCCUPANTS OR CAUSE DAMAGE TO EXTERNAL ELECTRICAL COMPONENTS OR WIRING. THE PIPE SHOULD BE DIRECTED DOWNWARDS. IT MUST NOT DISCHARGE ABOVE AN ENTRANCE OR WINDOW OR ANY TYPE OF PUBLIC ACCESS AS THE TEMPERATURE OF THE WATER BEING DISCHARGED MAY REACH 100° C.

held by two screws.

- d) Peel off protective paper from adhesive side of cork gasket (A) place on mating side of flue turret (B) lining up with four clearance holes, press together.
- e) Assemble second part of flue duct (H), push fit.
- f) Slide locking ring (C) and 'O' ring over plastic air duct.
- g) Slide air duct over flue duct, engage end of flue duct into terminal and locate air duct into turret (B).
- h) Slide 'O' ring along air duct (C), to contact with the face of the turret (B). Locate lugs on locking ring (C) between lugs on flue turret (B). Push together and turn to lock.
- j) Position square channelled rubber gasket (E) on the flue hood outlet of the boiler, channel facing downwards
- k) Pass the flue assembly through the wall and seat turret (B), onto the flue outlet, secure with 4 screws provided.

N.B. The terminal must extend 13 mm (0.5 in) past the surface of the external wall.

- I) Fit wall plate (F) provided with mastic sealing ring over air duct to structure.
- m) Make good internal wall face where the air/flue duct assemblies exit the room.
- **n)** Do not fit plastic turret cover 'D' until electrical connections to the pressure switch have been made (see fig.26).

In the event of an electrical fault after installation preliminary electrical system checks must be carried out. Checks to ensure electrical safety should be carried out by a competent Person i.e earth continuity, polarity and resistance to earth.

USE ONLY VOLTAGE FREE EXTERNAL CONTROL SWITCHING. NO SUPPLY VOLTAGE SHOULD BE CONNECTED TO TERMINALS 3, 4 OR 5.

5. EXTERNAL CONTROLS

6. COMMISSIONING

6.2

Fig. 33

Fig. 34

D

Fig. 35

Central heating circuits - filling

- 1) Ensure that the isolating valves are open (fig. 34 B and C). N.B. Valve (C) must be turned anti-clockwise by the knurled shaft until it dislocates from the thread and then pulled out horizontally to its extremity (approximately 30 mm (1 1/4 ins)).
- 2) Fill system to charge condition, see section 3.
- 3) Vent radiators and any high points.
- **4)** Vent air separator by loosening screw (fig. 34) (E) and purging until no air is apparent **N.B.** : ensure screw E is tightened.

Hot water circuits - filling

- 1) Check that stop cocks up stream of appliance are of a fixed jumper type.
- 2) Open mains cold water inlet valve (fig. 33) (A).
- **3)** Vent installation by opening taps and closing.
- 4) Check that "dead legs' have been eliminated.
- 5) Check for water soundness and rectify if necessary.
- 6) Set D.H.W. flow rate as required by adjusting screw (D) increase (anticlockwise) decrease (clockwise), see section 6.7.
- 5) Set system charge Pressure to design cold pressure. For a new installation we suggest 1.0 bar. For an old system see section (3, 9, 2) set to system static head or 0.8 bar which ever is the greater.
- 6) Check for water soundness and rectify any leaks.
- 7) Switch on electrical supply.
- 8) Manually check pump is free to rotate. Remove cap (fig. 35 D).

Insert small electrical screwdriver (3 mm blade), locate in slot in pump shaft, rotate clockwise to ensure that pump is free replace cap (D).

- 9) Switch to HOT WATER + CENTRAL HEATING on selector switch (A) (fig. 35) switch position (II).
- **10)** Allow pump to run for further 10-15 minutes. Switch OFF.
- 11) Isolate water supply and drain boiler by disconnecting fill system and opening the drain valve (F). This is incorporated in the safety valve and is achieved by screwing down the head until the valve lifts. Open all low level drain cocks.
- **12)** Remove filter in the return isolating valve (C) and inspect for any installation debris (see section 7.5), to clean and replace.
- 13) Refill system as above.

N.B. It is recommended that this is repeated after the system has been operated up to temperature to 'hot flush' to remove fluxes and remaining debris.

Lighting the boiler

1) Purge gas supply. Switch on electrical supply

2) Turn the lever on the gas service tap (fig. 34) (G) to the left. In the open position the flame sign is to the front.

3) Temporarily locate the two control 'knobs' one thermostat knob, one ignition button extension.

4) Switch to HOT WATER + CENTRAL HEATING (II) on the selector switch (A). The fan will run at low speed.

5) Press the ignition button (R) and hold in.a) The fan will change to high speed to purge the com-

bustion chamber. Gas is admitted to the pilot.

b) After approx 14 seconds the spark generator passes a continuous stream of sparks to light the pilot.

c) When the pilot is alight - viewed through the sight glass wait for a further 5 seconds before slowly releasing the button.

6) When the button is released, while the boiler is set to heating and any ancillary controls are in demand position, the boiler will fire.

7) Check for gas soundness using leak detection fluid or gas detector.

8) Check and adjust gas pressure/gas rate, see Section 6.4 **N.B.** The thermocouple output should be checked at this stage, should be greater than 12 mv.

R

Gas rate adjustment

N.B. Before adjustment check gas pressure on the inlet to the appliance, with the appliance working - this should be 20 m bar (8 in wg) for natural gas (G 20).

The maximum gas rate on hot water is fixed and is a function of the restrictor size. The central heating variable adjuster is factory set at 75 % i.e for an output of approx 16.5 kW (56248 Btu/h).

- 1) Switch boiler to the off (O) central position, see section 6.3 (fig. 35).
- 2) Remove the pressure test point screw (B) and connect a suitable pressure gauge.
- **3)** Remove the hexagonal cap from gas rate adjuster exposing the adjusting screw (C).
- **4)** Switch the boiler to hot water and central heating (II) and check that any fitted external controls are calling for heat.
- 5) Adjust. Setting pressures are given in graph figs. 37 and 38. The pressure will be reduced by clockwise movement of screw, increased by anticlockwise movement. Now select hot water only, adjust hot water regulator, see fig. 4 (20), to minimum and open the largest volume draw-off tap. The gas pressure should now be the maximum as indicated in Technical Data.
- 6) Switch boiler off (O). Remove pressure gauge and replace test point screw and gas rate adjuster hexagon cap. Check for gas soundness around screw.
- Mark the data badge, located on the front of the combustion chamber below the sight glass to indicate output to heating system.

Input / Burner pressure Input ft3/h 14 12 10 Burner pressure in wg pressure mbar Burner 1.50 1.75 2.00 2.25 2.50 2.75 1.00 1.25 Input m³/h

Fig. 37

Fig. 38

Fig. 36

6.6

D.H.W flow rate adjustment

This is set by the installer during commissioning. See section 6.1 and 6.7.

Adjusting the heating system by-pass

Where a by-pass is fitted, see section 3.2, it is necessary to adjust to obtain the boiler minimum flow requirement of 300 l/h (1.1 gal/min).

- 1) Set boiler thermostat to maximum, switch boiler to HOT WATER + CENTRAL HEATING (II).
- 2) Open all radiators and close the by-pass. Check the temperature rise accross the boiler which should not be greater than 20° C (36 °F).
- **3)** Adjust system to minimum load. This is normally done by closing valves on all but two radiators.
- **4)** Open by-pass gradually until the boiler operates quietly and the temperature rise is maintained.

N.B. The by-pass valve should be of the lock shield pattern. The flow switch operates at approx 300 Vh (1.1 gal/min).

Hot water adjustment

A flow restrictor (A) is fitted on the domestic hot water outlet. Adjustment of this restrictor enables regulation of the flow rate of the D.H.W. to suit individual installation conditions and requirements.

Adjustment is made by either turning the screw in a clockwise direction to reduce the flow rate and increase the temperature or by turning the screw anti-clockwise to increase the flow rate and decrease the temperature.

Fig. 39 a

6.8

Pump switching adjustment

The pump is set to turn ON/OFF via the room thermostat along with the burner, when the central heating mode is selected.

It is possible if required, to have the pump running continuously by turning the switch ① anti-clockwise, see fig. 39 b. The room thermostat then only switching the burner on and off.

Pump and burner switched

Burner only switched

HAND OVER THE USERS INSTRUCTIONS AND EXPLAIN THE BASIC FUNCTIONS OF OPERATING THE APPLIANCE. LEAVE THE INSTALLATION AND SERVICING INSTRUCTIONS WITH THE USER. IF THE ELECTRICITY SUPPLY IS INTERRUPTED THE PILOT MAY HAVE ESTINGUISHED. WHEN THE SUPPLY IS RESTORED RELIGHT THE PILOT SEE SECTION 6.3.

7. **ROUTINE SERVICING**

To ensure continued efficient and safe operation of the appliance it is recommended that it is checked and serviced as necessary at regular intervals. The frequency of servicing will depend upon the particular installation condition and usage, but in general once a year should be adequate.

It is the law that any service work must be carried out by a competant person, such as British Gas, other C.O.R.G.I. registered personnel or your local Chaffoteaux Service Centre, in accordance with the Gas Safety (Installation and Use) Regulations. This routine service will normally be confined to :

1) Cleaning the burner.

2) Cleaning the heat exchanger.

3) Checking the gas controls.

4) Cleaning water filter, hoses and heating filter.

5) Check operation of safety valve.

The following schedules are recommended :

a) Check the function of appliance, burner pressure, gas flow rate and soundness.

b) Observe flame picture and undertake combustion test.

c) Check, clean or replace components as necessary.

N.B. Before commencing any work turn off gas at the gas inlet tap (fig. 34) item (G) and ensure that the electricity supply is disconnected. Isolate water supply and drain appliance if required.

a) Remove four screws (A) securing the combustion chamber front panel.

b) Lift off front panel complete with expansion vessel and hang on hooks provided below boiler through matching holes on top folded edge.

N.B. Alternatively support on worktop or floor to avoid damage to flexible tube.

- Remove 2 screws (F1) and remove closure plate (see section 7.3).

c) Remove 6 screws (C) and lift off heating body front panel with access panel (B).

d) Clean the heat exchanger after removing the burner, see section 7.6.

- Replace in reverse order.

Fig. 42

Cleaning and replacement of parts a) The burner can be cleaned by inverting and brushing with a soft brush, inspect injectors, ensure they are clear. b) The heat exchanger flueways can be cleaned by thoroughly brushing the finned surface . After brushing inspect to ensure that the flueways are completely clear. d) The thermocouple can be wiped with a lint free cloth to remove any deposits. If the thermocouple tip appears burnt or craked, exchange to avoid a possible break at a later date - (see section 8.1). d) Examine electrode and clean, the tip. If the tip appears damaged replace electrode and lead assembly - see section 8.2. e) Replace all components in reverse order ensuring that the gasket between the gas section and the manifold is correctly positioned upon reassembly. f) Open all isolation valves and repressurise system if necessary. g) Recommission and check controls. h) After the boiler is lit, check all gas connections for soundess i) Allow the boiler to warm up thoroughly, then check the burner pressure and adjust as necessary to that given in the table for required output (see section 6.4). j) Restore any sytem controls and clocks to their original setting.

7.6

8. **REPLACEMENT OF PARTS**

N.B. Before commencing ensure gas and electricity supplies are isolated.

8.1

Fig. 47

Fig. 48

Fig. 49

To remove thermocouple

- a) Remove front case, see section 7.1.
- b) Remove outer front panel, see section 7.2.
- c) Remove burner, see section 7.3.
- d) Remove high limit stat see section 8.3.
- e) Remove thermocouple from thermoelectric valve connection (F).
- f) Loosen securing sCrew (G) two full turns to relieve tension from locking spring.
- g) Remove thermocouple by sliding down through gas section.
- h) Remove grommet (E) from base of gas section.
- **j)** Carefully form a 4 inch radius to thermocouple and insert thermocouple through gas section.
- **k)** Slide grommet (E) over the thermocouple.
- Continue feeding the thermocouple into its location until it is hard against the thermocouple stop H in the pilot head.
- m) Tighten fixing screw (G), previously loosened.
- **n**) Reposition grommet in base of gas section.
- **o)** Form the new thermocouple and connect to thermoelectric valve (F).
- p) Replace, high limit thermostat.

NOTE: When replacing the thermocouple the conductor may need manipulating - avoiding bending at acute angles

To replace electrode and lead assembly

- a) Remove front case, see section 7.1
- **b**) Remove outer front panel and combustion chamber front panel, see section 7.2
- c) Remove burner, see section 7.3
- d) Remove deflector plate (D), see section 7.4
- e) Disconnect from electrical box by pulling off electrode lead at lower left hand rear.
- f) Feed cable up through gas section (H) removing grommet (J).
- g) Remove electrode by pulling upward from location groove.
- **h)** Replace in reverse order locating electrode indeflector plate (D), spark gap 5 mm.

To replace safety overheat thermostat

a) Remove front case, see section 7.1

b) Remove two screws securing high limit thermostat to bracket (B).

- c) Remove high limit stat and thermocouple see 8. 1.
- d) Withdraw noting route.

e) Replace in reverse order. Use heat sink grease between high limit stat and bracket (B).

8.2

8.3

To replace ignition microswitch

- a) Remove front case, see section 7.1.
- **b)** Remove outer front panel and combustion chamber front cover, see section 7.2.
- c) Remove burner see section 7.3.
- d) Remove electrical control box, see section 8.9.
- e) Remove plugs from solenoid valves (Å), noting colours.
- f) Pull off three tab connectors (C) from microswitch noting their position (blue top, red centre, black bottom). Note: Microswitch connections must be made in accordance with wiring diagram. (fig. 9).
- g) Release gas union (B).
- **h**) Remove the two screws (D) retaining gas section.
- **j)** Slide out gas section (H) by pulling forwards (comprises solenoid valves, gas valve, pilot assembly electrode, etc).
- k) Remove two screws (S) retaining microswitch.
- m) Remove microswitch.
- n) Replace in reverse order.

To replace change over valve microswitch

a) Remove front case see section 7.1

b) Undo screw (A) and remove microswitch box cover. **N.B.** Upper microswitch operates for D, H, W mode. Lower microswitch operates for C H mode.

c) Lift spring (B) and pull operating lever off mounting pins.

d) Remove respective microswitch from mounting pins.e) Note colour code and pull off electrical tags.

f) Replace in reverse order. When replacing box cover, ensure that the lugs on the connector block are clamped **inside** the box.

N.B. Refer to fig. 9 for colour codes.

8.5

Fig. 52

Fig. 51

Fig. 53

To replace the flow switch assy.

- a) Remove air separator see section 8.13.
- b) Disconnect high pressure tube at union A.
- c) Disconnect low pressure tube at union B.
- d) Replace reverse order.
- e) Check for leaks

Fig. 54

8.8

Fig. 55

8.9

To replace venturi

a) Remove front case see section 7.1.

b) Isolate from cold mains water supply (A), open an hot water outlet and drain down from valve (E).

c) Remove plug (C) from left hand side of change over valve.

d) Use small screw driver to gently push out venturi ensure screw driver does not enter throat of venturi. e) Replace in reverse order.

f) Ensure that valve E is closed, restore cold mains water supply, check for leaks.

To replace primary heat exchanger

a) Remove front case, see section 7.1.

- b) Isolate appliance from system by closing heating flow and return valves (B and C), see fig. 34.
- c) Drain boiler (primary side) through safety valve (F) (fig. 34).
- d) Remove four screws securing the sealed chamber front panel and remove (see section 7.2).
- e) Remove left and right hand side on chamber Panels by pulling them carefully towards you.
- f) Remove combustion chamber front panel, see section 7.2.
- g) Remove burner, see section 7.3.
- h) Remove four screws (A) securing heating body panels to chassis.
- i) Undo flow and return pipe unions (E), remove pipes and slide primary heat exchanger forwards.
- i) Replace in reverse order.

To remove electrical control box

- a) Remove front casing, see section 71.
- b) Remove fuses by pulling fuse carrier (B) from electrical box.
- c) Remove 3 screws (C) lift electrical box cover away and unplug from PCB.
- d) Pull off plug from solenoid valves at PCB.
- e) Unplug pump connector at PCB and earth wire.
- f) Unplug connector to change over valve at PCB.
- g) Unplug connector from fan at PCB.
- h) Remove one screw (D) and two screws (E). (Electrical box support bracket to lower chassis).
- i) Carefully ease electrical box forward to allow access to flow switch lead, also to electrode at bottom rear of box
- j) Disconnect lead from flow switch.
- k) Disconnect electrode from rear of electrical box.
- 1) Carefully move the electrical box away from the appliance and to the right whilst straightening the capillary tube from boiler limit thermostat and domestic hot water thermostat.

30

To replace boiler thermostat

- a) Remove front case (see section 7.1).
- **b)** Remove five screws (A) and remove electrical box cover. Unplug from the PCB the single connector for the switch.
- c) Remove clip retaining thermostat phial .
- **d)** Remove two screws (D) which secure boiler thermostat to the electrical box cover.
- e) Remove the spade connectors noting position, see illustrated wiring diagram fig. 9.
- f) Feed out capillary through electrical box having removed the split grommet.
- g) Replace in reverse order.

8.15

8.16

To replace domestic hot water thermostat

- a) Remove front case (see section 7.1).
- b) Remove electrical box front cover (see section 8.9.(c)).
 c) Isolate mains water supply drain from valve beneath the change over valve (see section 8.11 fig. 58 (H)).
- d) Remove clip which retains phial in wet pocket.
- e) Remove phial from pocket.
- f) Ease thermostat off moulded pegs and pull of spade connections.
- g) Feed capillary through the control box, having removed the split grommet.
- h) Replace in reverse order. Polarity immaterial.

Fig. 66

8.20

Fig. 67

Fig. 68

8.22

8.21

To replace thermoelectric valve.

- a) Remove front case (see section 7.1).
- **b)** Remove thermocouple connection (B).
- c) Remove nut (A) securing thermoelectric valve.
- d) Withdraw thermoelectric valve.
- e) Replace in reverse order.

N.B. Care should be taken when replacing the nut securing the thermoelectric valve - fine threads.

To replace solenoid valves

- a) Remove front case (see section 7.1).
- b) Withdraw plugs colour coded from solenoids (B).
- c) Remove four screws (A) securing valve mounting plate.
- d) Remove mounting plate and solenoids take care not to misplace valve springs and plungers.
- e) Replace in reverse order using a NEW CASKET.

To replace heating body linings

- a) Remove case (see section 7.1).
- **b)** Remove combustion chamber front panel with expansion vessel (see section 7.2 (Å, B, C and D)).
- c) Remove burner (see section 7.3 (d)) First slide out side linings followed by rear which is removed by easing upwards and sliding out from bottom.
- e) Replace in reverse order.

To replace fan assembly

- a) Remove case (see section 7.1).
- **b)** Remove outer front panel (see section 7 2).
- c) Remove right hand side combustion chamber panel (see section 8.8).
- e) Pull off 4 spade connections from fan.
- f) Remove 2 screws on flue hood (A).
- **g)** Turn anti-clockwise 10° to disengage lug from rear and withdraw assembly.
- h) Replace in reverse order using new gasket,

N.B. Ensure correct location of fan connectors and that the lug at the rear is located correctly.

- (0): Red.
- (1): Brown.
- (2) : Blue.
- (E) : Yellow/Green.

Fig. 70

To replace pressure switch

- a) Remove two screws (A) retaining plastic turret cover and remove terminal cover.
- b) Note position of spade connectors and remove (COM-P, No 1 and No 2).
- c) Disconnect pressure sampling tube by pulling off nipple.
- d) Remove two screws retaining pressure switch (B).

e) Replace in reverse order.

N.B. Ensure 'O' ring is position on rear of pressure switch to seal pressure switch - high pressure sample joint. Transfer 4 mm support screw (C) and nut onto the new switch if not supplied.

To re-pressurise expansion vessel

- a) Remove case (see section 7.1).
- **b)** Close heating flow and return valves and drain boiler through safety valve (see section 6.2 fig. 34 (F)).
- c) Remove protective cap and check pressure on schroeder valve with gauge.
- **N.B.** The setting pressure is 0.65 bar (9.5 psi).
- **d)** To re-pressurise use car foot pump or bicycle pump with adaptor.
- e) Close safety valve.
- f) Open heating flow and return valves.
- g) Refill and commission boiler.
- N.B. Do not use a high pressure air line.

8.25

To replace pressure gauge

- a) Remove case (see section 7.1).
- **b)** Close heating flow and return valves and drain boiler through safety valve (see section 6.2 fig. 34 (F)).
- d) Undo union nut (A) on pressure tube at rear of gauge.
- e) Withdraw gauge.
- f) Replace in reverse order.
- g) Open flow and return valves. Re-pressurise system if necessary.

Fig. 72

8.30

Fig. 76

В

Α

To replace pilot injector, air filter, deflector plate/ burner head

a) Remove as detailed in section 7.4.

b) Replace in reverse order.

N.B. Pilot injector fitted bright side uppermost.

To replace expansion vessel

- a) Remove front case (see section 7.1).
- **b)** Isolate appliance from system by closing flow and return valves (see section 6.2 fig. 34 (B et C)).
- c) Drain boiler (primary side) through safety valve fig. 34 (F) and vent expansion vessel at (C).
- d) Remove flexible pipe from expansion vessel, at (A).
- e) Loosen upper securing screw (B) support and loosen lower screw. Slide out expansion vessel.
- f) Replace in reverse order, engaging the thread of the flexible pipe before screwing fully home screws (B). The vessel must be central on the front panel.
- g) Re-pressurise expansion vessel (see section 8.24).
- **h)** Open flow and return valves. If necessary, repressurise system.

(see section 6.2).

Fig. 77

8.31

- a) Remove front case (see section 7.1).
- **b)** Remove combustion chamber front panel (Å) (see section 7.2).
- c) Remove the screws (B) securing the sight glass bracket (C). Take care not to loose the two nuts (D).
- d) Replace in reverse order referring to diagram opposite.

Fig. 78

To replace the main gas valve body

- a) Remove front case (see section 7.1).
- b) Remove combustion chamber front panel (see section 7.2).
- c) Remove burner assembly (see section 7.3).
- d) Remove electrical control box (see section 8.9).
- e) Part thermocouple connections to high limit thermostat.
- f) Pull connectors off microswitch (M) noting colours.
- g) Remove two screws (P) retaining bracket to gas section and ease bracket down to clear gas section.
- h) Slacken and undo the gas supply union (D) beneath gas section.
- i) Remove two screws (R) retaining gas section to combustion chamber base.
- k) Remove gas section by pulling forward.
- m) Reassemble in reverse order and check for gas soundness.

8.33

Fig. 79

To replace the thermometer

a) Remove the front case (see section 7.1).

b) Unclip and remove thermometer sensor from flow pipe (Å).

c) Withdraw gauge (B) by compressing the two fixing lugs and pushing the gauge towards you. Feed the sensor through the bracket.

d) Replace in reverse order.

8.34

To replace safety valve

a) Remove case (see section 7.1).

b) Close heating flow and return valves and drain the appliance through safety valve (see section 6.2 fig. 34 (f) and section 7.8).

c) Ensure that the boiler is completely drained and the pressure gauge is reading zero (0).

d) Undo the grub screw (A) and remove the complete assembly by carefuly pulling it in a downwards direction. e) Replace in reverse order.

- f) Ensure that the valve is in the close position and repressurise system (see section 6.2).
- g) Open heating flow and return valves.
- h) Check for leaks.

Fig. 81

Fig. 80

39

9. FAULT FINDING

9.1 Logic sequence

9.4 FAULT FINDING TABULAR CHART

PROBLEM		CAUSE		REMEDY
1) Explosive ignition	i)	Poor pilot flame		
		 a) Inlet pressure low - should be 8" wg (20 mbar) working pressure 	1a)	Check meter and pipe sizing see sections 2.7 and 4.7
		b) Blocked gas filter	1b)	Clean
		c) Pilot injector dirty	1c)	Clean replace, see section 8.29
	ii)	1/3 valve not operating		
		a) 24 volts supply to valve	2a)	Replace solenoids, see section 8.20
		b) No voltage at solenoid	2b)	Check plugs on printed circuit board
			2c)	Replace printed circuit board, see sections 8.18
	iii)	Crosslighting strip - missing/incorrectly positioned	3)	Replace or reposition
2) Unstable burner	i)	Incorrect injectors	1)	Replace manifold 1.28 mm injectors for natural gas, see section 8.28
	ii)	Gas pressure at manifold		
		a) Too high	2a)	Adjust, see section 6.4
		a) Too low	2b)	Check restrictors and inlet pressure, see section 1.2
	iii)	Terminal incorrectly positioned	3)	See section 2.4
	iv)	Incorrectly assembled flue duct	4)	Check and reassemble, see section 4.10
	v)	Fan incorrectly located	5)	Remove and refit correctly, see section 8.22
	vi)	Combustion chamber front cover not sealing	6a) 6b)	Tighten Replace sealing strip
	vii)	Heat exchanger fins blocked	3)	Clean, see section 7.2 and 7.7
	viii)	Neoprene gasket in turret not crrectly fitted or missing	3)	Fit or refit, see section 4.10
 Central heating low flow 	i)	Boiler thermostat out of calibration	1)	Replace, see section 8.14
temperature	ii)	Limit stat out of calibration	2)	Replace, see section 8.15
	iii)	Insufficient gas pressure	3)	Check pressure at meter and pipe sizing, see sections 2.7 and 4.7
	iv)	1/3 blue or 2/3 orange gas valve not opening		
		a) 24 volts at solenoid	4a)	Replace solenoid, see section 8.20
		b) No voltage at solenoid	4b)	Replace print circuit board, see section 8.18
	v)	Hot water valve in change over valve assembly sticking		
		a) Dead leg on hot water system	5a)	Eliminate
		b) Bent spindle in valve	5b)	Replace, see section 8.11
	vi)	By-pass, if fitted, incorrectly adjusted	6)	Adjust, see section 3.16
	vii)	Pressure switch hunting	7)	Replace, see section 8.23
	viii)	System incorrectly balanced	8)	Balance system.

PROBLEM		CAUSE		REMEDY
4) Boiler noisy	i)	On heating only		
		a) Low flow rate as result of system resistance	1a)	Check and if omitted fit by-pass see section 3.16
		b) Air in system	1b)	Purge by venting radiators
	ii)	On hot water and central heating		
		a) Low pressure in sealed system	2a)	Repressurise to 1 bar cold see section 6.2 (5)
		b) Pump not running	2b)	Replace pump head, see section 8.10
	iii)	Blocked filter on heating return	3)	Clean and replace see section 7.6
	iv)	Gaz filter fitted to heating flow or return pipes	4)	Remove and reposition see section 4.5
	v)	Heat exchanger scaled	5a)	Descale
	vi)	Overgassed	5b) 6a)	Replace, see section 8.8 Check gas pressure and adjust, see section 6.4
			6b)	Check restrictors, see section 1.2
	(vii))	isolating valves not fully open	7)	Open fully see section 6.2
5) Hot water does not	i)	Low inlet water pressure	1)	Ensure all down stream stop cocks
temperature range	ii)	Incorrect venturi fitted	2)	Replace with 5.4 mm diameter, see section8 7
	iii)	Hot water limit stat out of calibration	3)	Replace, see section 8.16
	iv)	Solenoids not operating	4)	See section 9.2. Flow chart 1
	v)	Pressure switch hunting	5)	Replace, see section 8.23
	vi)	Low inlet gas pressure	6)	See section 6.4
6) No main burner	i)	Lack of water flow	1)	Checks valves are open see sections 6.1 and 6.2
	ii)	Pump jammed	2)	Manually check, see section 6.2 (8)
	iii)	No water	3)	Fill system, see section 6.2
	iv)	Flow switch not operating	4)	Replace switch, see section 8.34
	v)	Heating thermostat faulty (CH only)	5)	Replace, see section 8.14
	vi)	Pressure switch not operating	6)	Replace, see section 8.23
7) Safety valve discharges	i)	System pressure too high	1)	Adjust 1 bar cold
	ii)	Not isolated from mains	2)	Remove filling loop
	iii)	Vessel lost air charge	3)	Recharge 0.65 bar, see section 8.24
	iv)	Secondary heat exchanger (water to water) internal water leak	4)	Replace, see section 8.12
8) Pump noisy	i)	Air in system	1)	Vent radiators
	ii)	Air separator	2)	Open vent on air separator, see section 6.2 (4)
	iii)	Debris in pump	3)	Clean and replace, see section 8.10
	iv)	Water filter blocked	4)	Clean and replace, see section 7.6

PROBLEM		CAUSE		REMEDY
9) Excessive	i)	Return filter blocked	1)	Clean and replace, see section 7.
rise across boiler	ii)	Low water flow rate		
		a) Pump defective	2a)	Replace, see section 8.10
		b) High system resistance	2b)	Fit by-pass, see section 3.16
		c) Gas filter inadvertantly fitted in flow or return connection	2c)	Remove and refit, see sections 4.5
	iii)	Gas rate too high	3)	Adjust, see section 6.4
10) Rapid cycling high/low or	i)	Low water flow rate	1)	See 'System guidance' section 3.
high/low/off	ii)	Limit stat out of calibration	2)	Replace, see section 8.15
	iii)	By-pass, if fitted, not regulated	3)	Adjust, see section 6.5
	iv)	Blocked heat exchanger	4)	Clean or replace, see section 8.8
11) Fan on high speed continuously	i)	Defective printed circuit board	1)	Replace, see section 8.18
12) Loss of pressure	i) ii)	Leak on system Leak on appliance	1) 2)	Locate and rectify Locate and rectify
13) Gain in pressure	i) ii)	Filling loop still fitted and letting by	1)	Close stop cocks and remove
Shown on Sudde	iii)	Secondary heat exchanger (water to water)	3)	Replace, see section 8.12

•

<u>Notes</u>

Chaffoteaux et Maury Limited,

Trench Lock, Trench, Telford, Shropshire TF1 4SZ Telephone: (01952) 222727 Fax: (01952) 243493

Looking Good. Heating Better

ESP016